Embedding into Bipartite Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding Spanning Bipartite Graphs of Small Bandwidth

Böttcher, Schacht and Taraz [6] gave a condition on the minimum degree of a graph G on n vertices that ensures G contains every r-chromatic graph H on n vertices of bounded degree and of bandwidth o(n), thereby proving a conjecture of Bollobás and Komlós [15]. We strengthen this result in the case when H is bipartite. Indeed, we give an essentially best-possible condition on the degree sequence...

متن کامل

Book Embedding of Toroidal Bipartite Graphs

Endo [5] proved that every toroidal graph has a book embedding with at most seven pages. In this paper, we prove that every toroidal bipartite graph has a book embedding with at most five pages. In order to do so, we prove that every bipartite torus quadrangulation Q with n vertices admits two disjoint essential simple closed curves cutting the torus into two annuli so that each of the two annu...

متن کامل

Topological Book Embedding of Bipartite Graphs

A topological book embedding of a graph is an embedding in a book that carries the vertices in the spine of the book and the edges in the pages so that edges are allowed to cross the spine. Recently, the author has shown that for an arbitrary graph G with n vertices there exists a d + 1page book embedding of G in which each edge crosses the spine logd n times. This paper improves the result for...

متن کامل

Embedding Graphs into Embedded Graphs

A drawing of a graph G in the plane is weakly simple if it can be turned into an embedding by an arbitrarily small perturbation. We show that testing, whether a straight-line drawing of a planar graph G in the plane is weakly simple, can be carried out in polynomial time, if a desired embedding of G belongs to a fixed isotopy class. In other words, we show that c-planarity with pipes is tractab...

متن کامل

SURFACE EMBEDDING OF NON-BIPARTITE k-EXTENDABLE GRAPHS

We find the minimum number k = μ(Σ) for any surface Σ, such that every Σ-embeddable non-bipartite graph is not k-extendable. In particular, we construct the so-called bow-tie graphs C6 ⊲⊳ Pn, and show that they are 3-extendable. This confirms the existence of an infinite number of 3-extendable non-bipartite graphs which can be embedded in the Klein bottle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2010

ISSN: 0895-4801,1095-7146

DOI: 10.1137/090765481